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In the solution given by Hall & Walton (1977) for BBnard convection in a two- 
dimensional box with slightly imperfectly insulated side walls it was shown that there 
were certain critical values 2Lc of the length 2L of the box a t  which two modes became 
unstable simultaneously. In this paper we show that in the neighbourhood of Lc a 
secondary transition takes place which may be a bifurcation or a smooth transition 
depending on the boundary conditions. 

1. Introduction 
The onset of convection in a two-dimensional rectangular box has recently been 

the focus of much attention. Drazin (1975) discussed the flow in a box whose horizontal 
surfaces were stress-free and isothermal and whose vertical boundaries were rigid and 
perfectly insulated. He showed that the critical value of the Rayleigh number at  which 
instability sets in is Rc = Rc(L) with Rc(L) > R,", the corresponding value when the 
box is unbounded in the horizontal directions. This theory was extended by Hall & 
Walton (1977, hereafter referred to as HW) and Daniels (1977) to include imperfectly 
insulated vertical boundaries, 

HW showed that for the perfect problem two modes (one even, one odd) become 
unstable almost simultaneously. In fact for large values of L, the half-length of the 
box, their critical Rayleigh numbers differ only by a term O(L-s) and furthermore 
become equal at  certain discrete finite values of L. The theory given by HW is strictly 
valid only in the neighbourhood of the first bifurcation and for some values of L this 
is very small indeed. In  this paper we extend that work to cover a larger range of values 
of R including both bifurcations but still subject to the constraint R -  Rc(L) < L-, 
imposed in HW. 

The problem is formulated in $ 2 and in $ 3 we give a summary of Drazin's linear 
stability analysis of the perfect problem: The linear and nonlinear stability of the 
imperfect problem is discussed in $ 4 ,  and the amplitudes A and B of the even and 
odd modes are shown to satisfy equations of the form 

(1 .1 )  I c,dA/dt  = c,(A3+c2 A2B - c,(R, -p )  +c,), 

d5 dB/dt = d,(B3 + d ,  B2A - d,  R, + d,).  

Here ci, di (i = 1, . . . , 5 )  and p are constants depending on L, and R, is a scaled Rayleigh 
number. When the side walls are perfect insulators c, = d,  = 0 and (1.1) then reduces 
to a pair of equations examined by Keener (1976). In $ 5 we discuss the clolutions of 
these equations in the context of BBnard convection and in 3 6 we allow c, and d,  to 
be non-zero. Finally, the results are discussed in $7 .  
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2. Formulation of the problem 
We consider two-dimensional convection in a rectangular box bounded vertically 

and in one horizontal direction; the box is assumed to be of infinite extent in the 
second horizontal direction. The vertical side walls are taken to be rigid and almost 
perfect insulators. The upper and lower surfaces are taken to be free and isothermal, 
the lower surface being maintained at  a temperature A T  above that of the upper one. 

Let (x, z )  be dimensionless horizontal and vertical co-ordinates so chosen that the 
upper and lower surfaces are located a t  z = 0 , l  and the vertical boundaries at  x = f. L. 
If T is a dimensionless temperature and Y a dimensionless stream function, the 
equations governing the motion are (Kelly & Pal 1976) 

V2(V2- a/at)Y = RaT/ax+ u-1a(V2Y,Y)/a(x, z) ,  (2.1) 

(2.2) ( v 2 -  rapt) T = a(T,y)/a(x, z),  

where the Rayleigh number R and Prandtl number u are defined by 

R = ga(AT) ha/vK, u = v/K. (2,3a, b )  

Here v, K and a are the coefficients of kinematic viscosity, thermal diffusivity and 
thermal expansion, respectively, and h is the separation of the horizontal surfaces. In  
deriving (2.1) and (2.2), it is assumed that the fluid is incompressible and the Bous- 
sinesq approximation has been made. 

The boundary conditions needed to complete the specification of the problem are 

(2.4) I Y = a 2 Y p  = 0, T = 1,0 at z = 0 , l ;  
Y = a Y / a x =  0 a t  X =  k L ;  

aT/ax = pg(z) a t  x = L;  
aT/ax = ph(z) at x = - L. 

Thus /3 is the characteristic scale of the deviation of the boundary conditions from 
those for perfectly insulated side walls; the functions g(z)  and h(z) are prescribed. 

3. Linear stability with perfectly insulated boundaries 
The stability of the flow with /3 = 0 has been discussed within the restrictions of 

linear theory by Drazin (1975). In view of our extensive use of his solution later on, 
it is worthwhile repeating the salient features of his work here. 

We first note that a simple steady solution of (2.1), (2.2) and (2.4) is 

T = l - z ,  YEO. 

We perturb this state by writing 

T = 1 - ~ + 8 ,  '4'= $, 

where 8 and $are small; then the linearized equations which determine these functions 
are 

with boundary conditions 

v2(v2 - a/at)  $ = R aelax, (vz - u a p t )  e = a+/ax, (3.1) 

(3.2) 
0 = $ = P$/az2 = 0 at z = 0,1, 

aepx = $ = a+/ax = o at  x = L. 
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Here V2 = a2/ax2 + a2/aza. The boundary conditions (3.2) suggest that we may seek a 
neutrally stable solution of (3.1) of the form 

(e, $1 = (@D(x) ,  $DCX)) sinnnZ, (3.3) 
where 6, and $, are given by 

(3.4) 

(3.5) 

I (d2/dxa - n2n2)2 $D = Rde,/dx, 
(d2/dx2 - n2n2) 0, = d$,/dX, 

with d0,ldX = $, = d$,/dX = 0 at x = L. 

The general solution to (3.4) is 

3 3 

i=l  C = l  
0, = CI (Ai, cos ain x + Bin sin a,, x ) ,  $, = (Cin cos a,, x + Din sin ai, x ) ,  (3.6) 

where Ain, Bin, Ci, and Din are constants and the wavenumbers a,, are the three 
roots of 

(a2 + n2n2)S = Ra2 

which have arguments in the range ( - in) in]. 
If the container is infinitely long the condition that 0, and $, remain finite as 

x + 4 00 means that at least one of the ain must be real. The lowest value of R for which 
this occurs is R = R," = 3$n4 z 657.5 with a = a, = n/J2 and n = 1. The corres- 
ponding disturbance is then given by 

Solutions exist for R > R," because then two of the a, are real. 
In  a finite container Drazin shows that all six solutions in (3.6) are needed to satisfy 

the six boundary conditions (3.5)) but that they may be divided into those for which 
OD, say, is even or odd in x .  Thus, for the even mode with n = 1 we have 

(3.7) 

0, = Acosa,x+Bsina,x, $, = Ccosa,x+Dsina,x. (3.81 

3 3 -(a:++) 
0, = Aicosaix, $, = A, sin a, x ,  

5 = 1  +l a, (3.9) 

and similarly for the odd mode. It may be shown that for R c R," there are again no 
solutions satisfying the prescribed boundary conditions and that for R > R," solutions 
exist only for discrete values of R. This quantization of R is, of course, to be expected 
because the domain is bounded. For each value of L we may calculate an infinite 
number of such discrete values of R and if we denote the lowest such value by R,(L) 
we can show that R,(L) J. R," as L + 00. The critical Rayleigh numbers for the even 
and odd modes will be denoted by RcE(L) and R,,(L) and are tabulated in table 1 of 
HW. 

4. Imperfectly heated side walls 
Suppose now that the vertical boundaries are no longer perfect insulators but such 

that /3g(z) at x = L, 
a T / h  = 

As in HW, we shall consider functions which can be expanded in the form 
02 

( d z ) ,  Wz)) = CI (Sit, hn) sinnnzz, 
n=1 

(4.1 a)  

(4.1 b )  
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but we shall no longer make the restriction that the boundary conditions are either 
even or odd in x .  It is, however, convenient to write g(z)  and h(z)  in terms of odd and 
even functions. Then the boundary conditions are 

aT a, x (gno-+gnE)sinnm at x = +L,  (4.2) p-l ax = 

where gno = $(gn + hn) and gnE = +(gn-hn). 
For p < 1 we expect that 8 and $ will be of the form 

where Om, and lC',, are functions of x only. If the upper and lower surfaces are free 
and isothermal we require 

8 = $ = a 2 $ / a z 2  = 0 at z = 0,1, (4.44 

and a t  the side walls we need 
m 

n = l  
$ = a$/ax = 0, a8/ax  = p C (gno  +gnE)sinnm a t  x = -c L. (4.4b) 

This suggests that we further write 

(Om,, $mn) = (80mn+ eEmn, $Omn+ $Emn),  (4.5) 

where Oomn is odd in x and 8,,, is even. Then if we substitute the expansions (4.3) 
and (4.5) into (2.1) and (2.2) and equate terms in psin nnz to zero we obtain 

(4.6) 

(4.7) 

1 
I 

z n  O O l n  - $;In = 2; ~ O l n  - Re&n = 0, 

$.,, = $bin = 0, Ohln = gno a t  x = 5 L 

$Eln = = 0, eLln = +g,, at x = +A. 

and s n  8x1,- $&In = 9; O E l n -  R&n = 09 

Here the operatorzn is defined byYn == d2/dx2 - n2n2 and a prime denotes d/dx. 
The solution to the even inhomogeneous problem defined in (4.7) was given in HW 

and was shown to be unique provided that R < R,,(L). As R approaches Rc,(L) the 
amplitude of the solution grows like (R - R,.E)-l until nonlinear forces come into play 
to restrict further increases in amplitude. A balance between nonlinear effects and - 
resonance effects occurs when 

R-R,, - Yf, 
where y = /?L-2, and a new solution is needed in this parameter range. Similar remarks 
apply when the boundary conditions for 8 are odd, i.e. g1E = 0; then we denote the 
critical Rayleigh number by Rc0(L). In  both cases it is the first, n = 1, mode that is 
resonated and if glo or glE is non-zero this is the only mode we need consider. On the 
other hand if gl0 = g,, = 0 but gno or g,, is non-zero for some n > 1 then higher 
modes are excited. We shall exclude that possibility from the present discussion and 
set n = 1 hereafter. 

We shall show later that for some values of L these solutions are valid as long as 
R - min {Rco, RcE) - y*, but for others the theory given in HW needs some modifica- 
tion. That theory breaks down completely when the boundary conditions are neither 
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odd nor even, for both modes are forced and are coupled when nonlinear effects are 
taken into account. The object of this paper is to fill in these gaps in the theory. 

In  the neighbourhood of R,, let us write R in the form 

R = RO(1 +YfRl), (4.8) 

RcE = +Yfp)*  (4.9) 

where R, - 1, and further define p as a measure of RcE - Rc, by writing 

Then if ,u -= 0 the even mode resonates first and if p > 0 the odd mode does so. 
The parameter y is taken to be small, but is so far otherwise unspecified. It is 

convenient to define it in such a way as to make p N 1 for the range of values of L 
under examination. Accordingly let us take 

Y f  = max I R c E - R c O l / R c O .  
L 

It was shown in HW that although the sign of p(R,, - Rco)/Rc0 changes with L its 
magnitude is small for moderate values of L and 0(L-3)  for L & 1. The magnitude of 
the imperfection in the boundary conditions is therefore O(yL2 max (g, , ,  g l E ) )  and 
we shall take g , ,  and g l E  to be 0(L-2) .  It was shown in HW that this solution is valid 
only if R, yf < L-2, for large values of L .  This is consistent with the scaling adopted 
above provided that R, is no larger than O(L) as L + 00. We shall take R, to be O( 1). 

So far we have sought neutrally stable solutions. When the boundaries are perfect 
insulators such a solution is possible if R, < min (R,,, ReE) but thereafter nonlinear 
effects give rise to a growth rate O(R, - min (R,,, R,,)). This suggests that we adopt 
a new scaling for t by writing t = y-)T so that a/at  = yfa/aT; we then take a/aT to be 

We also expand 8 and $ in powers of y .  Following HW, we write 

(8,$) = Y W +  ~~)+Ys(gf3,$f)+Y(gl,$l)+0(Y~). (4.10) 

When we substitute the above expansions into (2.1) and equate terms of order y* 

(4.11) 
we find that 

where A ( L ,  T )  and B(L, T )  are functions of L and T to be determined and ( O E ,  i,hE) 
and (8,) $,) satisfy 

(gA, $4) = [A(L,  (OE? $ E )  + B(L, ( O O )  $0)1 sinnz, 

(4.12) i = W , - $ k  =dP:$ , -R ,G = 0, 
2,8,-$; = 2’4$,-Ro8b = 0, 

l j rE  = $& = 6; = $, = $b = 0; = 0 at x = f L .  

Then and (8,,$,) are the first even and odd modes of the corresponding 
homogeneous problem defined in (3.4) and (3.5). Details of the solution of (4.12) are 
given in appendix A. 

At order ys we find that 

(Of, $*I = [A2(620> $20)  + B2(821, $21) + AB(O22, $ 2 2 ) 1  sin 2772, (4.13) 

(4.14) 1 where 22 O20 - $LO = gn{8k $E - eE $k)~ 
2; $20 - ROE G o  = (n /24  ( 2 1  9% $E - 3 1  $E $kL 

9 2  021 - 9% = 3 w o  8; - 80 $a, 
9; $21-  Rc, %I = b/24 ($0 9 1  $; - @L-b 9 1  $o), 

(4.15) 
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2z eaZ- $;2 = i b ( $ O  ek + $E 'b- 'E $b- eO $&)* 

9% $zz-Rco 4 2  = (n/W ( $ 0 0 1  4; + $ E 2 i  $L - 4d 9 1  4 E -  $&Ti $0) 
and $,i=$';a=6';c=Oatx= + L ( i = O , 1 , 2 ) .  

It can be seen from the terms on the right-hand sides of these equations that Sea, 
S,, and $,, are even functions of x while $zo, $,, and 6,, are odd functions. The choice 
of RcE or R,, in the left-hand sides has been made accordingly but since they differ 
by a term O(y%) the choice is arbitrary a t  this order. The function pair ( t920,~,o) ia 
identical to the pair (83, $ 3 )  given in HW and all the functions (&, $2i) (i = 0, 1,  2) 
are given in appendix A. 

At order y we see that 

(tr,, $1) = (63, $3) sin flz + (84, $4) sin 3nz, (4.17) 
where, in particular, 

(4.18) I 64, 6, - 4; = A3F0(x) + A2Bfi;(x) + A  B2F,(x) + B3F3(x) 
+ a(dA/dT) 8,+ a(dB/dt) 80, 

64: $3 - R,o 6; = A3GO(x) + A2BG1(x) + AB2G,(x) + B 3 (4 
+ Rco R,(Ae& +BOA) + (dA/dT) 64, $E + ( d B / d t )  641 $0, 

with $ 3 = $ ; = 6 ; = 0  at x = + L .  

Here the functions E ( x )  and Gi(x) (i = 0,1 ,2 ,3)  are defined in terms of O,, $E, etc. 
and are given in appendix B. 

The boundary conditions are 

$ 3 = $ j = 0 ,  8j=L2(gl0+glE) at x = + L .  (4.19) 

We note that 8, F,, Go and G, are even functions of x while F,, F3, G,  and G, are odd 
functions and again the choice of R,, or R,, on the left-hand side of (4.18) is arbitrary. 
The boundary conditions (4.19) also consist of odd and even terms and i t  is convenient 
to split e3 and $3 into their odd and even components by writing 

where 
(e3, $3) = (63E, $3E) + (@30, $ 3 0 ) ~  

$3, = $iE = 0, Bj, = L2glE at x = + L I 

I and 64, 630 - $&, = B3F3(x) + BA2Fl(x) + cr(dB/dt) So, 

9 ~ $ 3 0 - R c o 6 j o  = B3G3(~)+BA~G1(~)+BR1R,od6~/dx+(dB/dt)dR~$0, (4.21) 

$-30 = $i0 = 0, 6j0 = P g , ,  at x = + L. 
We have written R = RcE+ R , , ( R , - p ) ~  in the first of these equations and equi- 
valently R = R,, + R,, R, y* in the second. This ensures that the left-hand sides are 
identical to those in the linear [O(y*)] equations (4.12). 

Solutions of the inhomogeneous problems defined by (4.20) and (4.21) exist provided 
that certain compatibility conditions are satisfied. These reduce to 

(4.22) 

The coefficients ci and di (i = 1, . . . , 5 )  are defined in terms of integrals involving Po, 
Go etc. and are given in appendix B. 

1 c5dA/dT = c , ( A ~ + c , A B ~ - c ~ ( R , - ~ )  A-c , ) ,  
d5 dB/dt = d1(B3 + d, BA2 - d3 R, B - d4). 
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5. The amplitude equation with perfect boundary conditions 
We turn now to a discussion of equations (4.22) for the amplitudes A and B of the 

even and odd modes, and begin by considering the boundaries at x = & L to be perfect 
insulators. This means that aT/ax = 0 a t  x = & L and consequently that c, = d,  = 0;  
equations (4.22) then reduce to 

c,dA/dT = c,A[A2+ C , B ~ - C ~ ( R , - , U ) ] ,  

d,dB/dT = d,  B(B2 + d ,  A2 - d3 R,). 
(5 .1)  

These equations are the same as those discussed by Keener (1976). He showed that 
there is a number of different classes of steady solutions depending on the relative 
values of the coefficients and described four such cases. In each of these there are three 
solutions which do not depend upon the interaction of the even and odd modes; 
these are 

(5 .2 )  I (i) A = B = 0 (trivial mode), 

(ii) A = 0,  B2 = d ,  R,, R, > 0 (pure odd mode), 

(iii) B = 0, A2 = c3(R, -,u), R, > ,u (pure even mode). 

The amplitude of the disturbance is zero for R, c R,, = min (0 ,  ,u} but bifurcates at 
R,, and R,, = max {O , ,u } .  Keener showed that for certain values of the coefficients in 
(5 .1)  these bifurcated solutions may themselves bifurcate because of the presence of 
solutions of ( 5 . 1 )  in which neither A nor B is zero. These solutions are given by 

(5.3) 1 A2( 1 - C, d,) + R,(c, d3 - ~ 3 )  + c 3 , ~  = 0, 

B2(1 - ~ ~ d , ) + R ~ ( d ~ c ~ - d 3 ) - d ~ ~ ~ ~  = 0.  

The reader is referred to Keener’s paper for plots of I A2 + B21* against R, for each of 
the four cases mentioned above. 

We have computed the coefficients c,, c2, c,, d,, d ,  and d3 for L in the range ( 1 ,  10) 
with u = 1 .  The results indicate that for certain values of L no secondary bifurcation 
occurs at  all, in which case only the three solutions given in (5.2) are possible. A plot 
of [A2 + B213 against R, is given in figure 1 (a).  For all other values of L we find that the 
solution is Keener’s case 11, in which d i l  < c3dg1 < c, and only the mode which 
bifurcates second undergoes a further bifurcation. This is illustrated in Keener’s 
figure 1 ,  which is similar to our figure 1 ( b ) .  The ranges of values of L for which the 
solution falls into this category are given in table 1. 

It was shown in HW that RcE and Re, depend on L in such a way that ,u is positive 
for some values of L and negative for others. This means that for some values of L 
the odd mode bifurcates first and for others the even mode does so. We find that each 
value of L for which ,u = 0 lies in one of the ranges of L referred to above where a 
secondary bifurcation is possible, and this now enables us to describe the way the two 
pure modes exchange places as L passes through one of these critical values. 

Suppose that L, is one such value and suppose that (L,,, .L&) defines the range of 
L including L, in which a secondary bifurcation is possible. Then for L c L,, the 
solution appears as in figure 1 (a).  (We have taken ,u to be positive for this illustration.) 
It is a straightforward matter to determine the stability of the various branches to 
small disturbances; we shall not give details here but the result is shown in figure 1.  
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0 P 

Rl 

0 P P* 
Rl 

FIGURE 1. Bifurcation diagram for the perfect problem when (a) L 4 (Llc. LZc) and ( b )  L E (Llc,L2,). 
I, A = B = 0; 11, A = 0, B = (R1c,p)*; 111, B = 0, A = k [d , (Rl -p) ]*;  IV, A ,  B given by 
(5.3). p and p* are defined in the text. - --.-, stable solution; -, unstable solution. 

- 1.26 
1.68, 2.00 
2.43, 2.72 
3.18, 3.43 
3.92, 4-13 
4.64, 4.84 
5.36, 5.55 
6.08, 6.25 
6-80, 6.96 
7.52, 7.66 
8.23, 8.36 
8-95, 9.07 
9-66, 9.77 

LC 

1.13 
1-87 
2.60 
3.32 
4.04 
4.75 
5.46 
6.17 
6.88 
7.59 
8.30 
9.01 
9.7 1 

LPC - G c  

- 
0.32 
0.29 
0.25 
0.21 
0.20 
0.19 
0.17 
0.16 
0-14 
0.13 
0.12 
0.11 

Number of cells 
for odd, even 

modes 

3, 2 
3, 4 
5,4 
596 
7, 6 
7, 8 
9, 8 
9, 10 

11,10 
11,12 
13, 12 
13, 14 

- 

TABLE 1. The ranges (L,c, Lac) of values of L in (1,  10) for which solutions of (5.1) bifurcate a 
second time. L, is the value of L a t  which R,, = R,. The Prandtl number CT = 1-0. 
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When L1, <: L c L, the second branch bifurcates again and its secondary bifurcation 
is unstable, leaving the branch itself stable (figure 1 b) .  Suppose that this exchange 
of stability occurs at R, = ph. Then as L + L, - , ,u -+ 0 + and p* +,u + with the result 
that the seoond branch approaches the first and the range of values of R, for which it 
is unstable decreases to zero. At L = L, both branches are completely stable and 
coalesce. As L increases further the two branches separate and change places in the 
diagram. Provided that L, c L c L, the branch to the right still becomes stable at 
some value of R, but for L > L, it  is completely unstable and the graph again 
resembles figure 1 (a) but with the two pure modes interchanged. The transition of L 
through a critical value is then complete. 

The critical values of L in ( 1 ,  10)  are also given in table 1. It can be seen that at 
least for moderately large values of L they differ by about 0.71  and this may be 
interpreted in terms of the fitting of the cells into the length 2L of the box. For L 1 
the wavenumber is approximately that for an infinite box, 7~142, and this means that 
the wavelength is 2 J2. The length of each cell is therefore J2 and an extra cell is fitted 
in every time L is increased by 442 w 0.71.  The width of the range of values of L for 
which a secondary bifurcation occurs seems to decrease as L increases and it is expected 
that for large values of L the possibility of a secondary bifurcation is confined to 
relatively narrow ranges a t  intervals of about 442. The width of this range is 

O( I R c E  - Rco I &El( 1 - d3Ic3 dJ-l) 

and this may be estimated for large values of L. We known that I RcE - Rcol/RcE N L-3 
and c3, d,, d3 = 1 + O(L-'), so we conclude that the width of the range is O(L-l). The 
number of cells associated with the odd and even modes for the range [L,,, L&] is shown 
in table 1 .  We note that for L in these ranges the number of cells is constant. 

6. Solution of the amplitude equations 
We now discuss the solutions of the amplitude equations (4.22) in the presence of 

the forcing terms. It is convenient to discuss separately the cases (i) c,  = 0, d,  =I= 0, 
(ii) c,  =# 0, d, = 0 and (iii) c,  =+ 0, d,  + 0. We further assume, without any loss of 
generality, that ,u > 0 so that the odd mode is the most unstable. 

Case (i): c, = 0, d, =+ 0 

The steady solutions of (4.22) then satisfy the equations 

0 = A(A2+c2B2-c3[R1-~]) ,  

0 = B3 + d2 BA' - d3 R, B - d,. 

( 6 . 1 ~ )  

(6 .1b )  

Thus one solution is given by A = 0 and B is then determined by the cubic equation 

O = B3-d3R1B-dq. (6.2) 

The solution of ( 6 . 2 )  for d ,  positive is given by curves I and I1 in figure 2(a).  The 
first branch is stable to both odd and even disturbances whilst the second branch has 
an unstable part which asymptotes to zero as R,-+oo. Curve I and the stable part 
of I1 asymptote respectively to the positive and negative roots of the equation 

as R, tends to infinity. 
0 = B2-d3R1B 
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. 

FIGURE 2. Bifurcation diagrams for steady solutions of (4.22) for case (i). (a)  B and (b )  A US. R,. 
_ _ _  _ _  - , perfect solutions; -. - * - , stable imperfect solutions; --, unstable imperfect solutions. 
Curves I, 11,111, . .. are defined in the text. 
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Other solutions of (6. I a )  are given by 

0 = A2 + ~2 B2 - c3[R1 -/A]. (6.3) 

Substitution of A2 from (6.3) into (6 . lb)  shows that B must now satisfy the cubic 

(6.4) 
equation 

We note that if A2 2 0 then (6.3) gives 

0 = B3[ 1 - c2d2] - B[d3 R1- d2c3 R1- ~ , c , / A ]  - d4. 

c ~ [ R ~ - , x ] - c , B ~  2 0. 

The solutions of (6.4) satisfying the above inequality are shown as curves I11 and IV 
in figure 2 (a). Branch I11 bifurcates from curve I and then asymptotes to the solution 
of the perfect problem as shown. The corresponding behaviour of A is shown in 
figure 2 ( b ) .  We note that at the bifurcation point A is zero and dA/dR, is finite. 
Furthermore branch I11 is an unstable solution. The remaining solutions of (6.4) and 
the corresponding values of A are given by curve IV in figures 2(a) and ( b ) .  These 
solutions begin at a point where dA/dRl and dB/dR, are both infinite. One branch 
of the curves is stable and the other unstable in both cases. However, we see that if 
R, is increased from zero then the motion follows curve I unless the motion is per- 
turbed by a disturbance sufficiently large to enable A and B to tend to the stable 
singular points associated with the stable parts of IV. 

Case (ii): c4 $: 0, d4 = 0 

The steady solutions of (4.22) now satisfy the equations 

0 = A3 + ~2 AB2 - c ~ ( R ,  -/A) A - cq, 

0 = B(B2 + d2 A2 - d3 Rl) .  

(6.5a) 

(6.5b) 

We assume, without any loss of generality, that the constant c4 is positive. We can 
see from (6.5) that a possible solution is B = 0 and that A is then determined by the 
equation 

Alternatively we can see that (6.5 b) is satisfied if 

(6.6) 0 = A3 - c ~ ( R ,  --p) - ~ 4 .  

B2 = -d2A2+d3R1 
and then A is determined by 

If B2 2 0 then solutions of (6.8) must satisfy the condition 

d ,  A2 < d ,  R,. 

The solutions of (6.6), (6.7) and (6.8) are shown in figures 3, 4 and 5. The two branches 
of the solution of (6.6) are shown in figures 3 ( b ) ,  4(b) and 5 ( b )  and are in each case 
labelled I and 11. One solution of (6.8) is the curve I11 shown in each of these figures. 
This curve bifurcates from curve 11, so that B is virtually zero on 111. In  addition to 
111, (6.8) has the solution represented by IV in figures 3(b), 4(b) and 5(b). We must 
distinguish between the following three cases : 

(a)  Curves I and IV do not intersect. This occurs when c4 is sufficiently large and the 
amplitudes A and B for this case are shown in figure 3. In this case curve I is always 
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FIGURE 3. Bifurcation diagrams for steady solutions of (4.22) 
for case (iia). Notation as in figure 2. 
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FIQVRE 4. Bifurcation diagrams for steady solutions of (4.22) 
for case (iib). Notation as in figure 2. 
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FIGURE 5. Bifurcation diagrams for steady solutions of (4.22) 

for case (iic). Notation as in figure 2. 



BCnurd convection in a finite box 391 

stable and we see that when the Rayleigh number increases through the critical value, 
A asymptotes smoothly to the stable solution of the perfect problem and B remains 
zero. 

( b )  Curves I and I V  intersect but curve IV has a point where dA/dR, = 0. This is 
shown in figure 4 and occurs for lower values of c, than does case (a). At the 
bifurcation point P where I and IV  meet, I changes into an unstable solution. At this 
point there is no stable solution within the immediate neighbourhood of P to its right. 
Thus as the Rayleigh number is increased we expect that the motion will jump 
towards the stable steady solution at the point Q .  When this occurs B jumps from 
P to either of the values Q or Q' shown in figure 4 (a) .  The motion after this jump has 
both A and B non-zero and is stable. However, as R, increases A tends to zero and B 
tends to either of the stable solutions of the perfect problem with A = 0. 

( c )  Curves I and I V  intersect but I V  has no point where dA/dR, = 0. This is shown 
in figure 5 and occurs for even smaller values of c,. At the bifurcation point Q in 
figure 5 ( b )  the solution represented by I again becomes unstable but the motion can 
then follow the stable part of IV. At the bifurcation point B = 0 so there is no jump 
in this case. As the Rayleigh number increases further A tends to zero whilst B 
asymptotes to either of the stable solutions of the perfect problem with A = 0. 

We conclude this subsection by noting that, if the imperfection is only in A ,  then 
provided that it is sufficiently large the motion follows the smooth path to the stable 
solution of the perfect problem with B = 0. Otherwise the motion ultimately asymp- 
totes to the stable steady solution with A = 0. Furthermore, for a particular range of 
imperfection there is no continuous steady path to the final equilibrium state. 

Case (iii): c, + 0, d, + 0 

In this case the odd and even modes are both forced. The steady solutions of (4.22) 
then satisfy the equations 

0 = A3 + c2 AB2- c3(R1 -p )  A - c,, 

0 = B3+d2BA2-d3R,B-d,.  

We show in figure 6 typical solutions of the above equations for c,  and d, both positive 
and of the same order of magnitude. We see that as the Rayleigh number is increased 
from zero the motion follows the stable path I and that as R1+m it  asymptotes to 
the stable steady solution of the perfect problem with A = 0 and B > 0. In  addition 
there are three other possible stable solutions at sufficiently large Rayleigh numbers 
each associated with portions of curves 11, IV and V. Unless a finite amplitude per- 
turbation is imposed on the flow we expect that when the Rayleigh number is increased 
these solutions will never be realized in practice. 

We have not so far discussed the case when L lies outside the range where the 
perfect problem has a secondary bifurcation. In this case the solution of the perfect 
problem which bifurcates first is the only stable solution and the effect of the im- 
perfections can be investigated in the manner discussed above. It suffices here to say 
that for all values of c, and d, the forced solution has only stable branches which 
asymptote to those of the perfect problem. 
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FIGURE 6. Bifurcation diagrams for steady solutions of (4.22) 
for case (iii). Notation aa in figure 2. 
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Appendix A 

satisfy (4.12) and (4.14)- -(4.16). The solution of (4.12) is written in the form 
In  this appendix we give expressions for the various function pairs (8, $) which 

where (a; t n2)3 = RcE a;, (C; 4- ?72)3 = Rco C k ,  

and A ,  and C,,, are chosen to satisfy the homogeneous boundary conditions a t  x = ~f: L. 
The details of this calculation are given by Drazin (1975). 

If we substitute the expressions (A 1)  for OE, $E,  8, and @ o  into (4.14) we find that 

3 3  

m = l  n = l  
m+n 

RE 820 = C C Am An[smn cos (am + an) 2 + tmn COB (an - am.) XI 
3 

7 7  
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3 2  

3 

m = l  
- (bg  + n) b,' Dm sin bm. 

Here urn, = - smn, pmn = - #,,, vmn = tmn and vmn = Am, but with a,,, and a, replaced 
by c, and c, respectively. The constants 0, (m = 1,2,3) are chosen to satisfy the 
homogeneous boundary conditions at x = L. 

From (4.16) we find that 

3 3  3 

m =1 n = l  m= 1 
R O  0 2 2  = C C A ,  Cn[wnhn sin (anh + cn) x + zmn sin (a, - c,) x] + C Ro Em sin dm x, 

3 

m = l  
+ Z ( d i  + 4n2) dkl Em cos dm x, 
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$odx, d ,  = 2dy' L2glo Rco 6&), 

d ,  = -'loL ( a R c o 8 ~ - $ 0 9 , $ ~ ) d x .  
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